ВходРегистрация
Например: Научное мнение
О консорциуме Подписка Контакты
(812) 409 53 64 Некоммерческое партнерство
Санкт-Петербургский
университетский
консорциум

Статьи

Университетский научный журнал №48 (филологические и исторические науки, археология и искусствоведение), 2019

Диэлектрическая релаксация и перенос заряда в структурах на основе халькогенидной системы Ge2Sb2Te5

Р. А. Кастро, А. А. Кононов, Ю. Саито, Ю. Томинага, А. В. Колобов
Цена: 50 руб.
 Представлены результаты исследования процессов диэлектрической релаксации и переноса заряда в тонких слоях системы
Ge-Sb-Te. Обнаруженные дисперсия диэлектрической проницаемости и существование максимумов диэлектрических потерь в
области низких частот объясняются структурными особенностями кристаллической и аморфной фаз. Степенная зависимость
удельной проводимости от частоты позволяет предположить
существование прыжкового механизма переноса заряда, обусловленного прыжками носителей заряда по локализованным состояниям в запрещенной зоне.
Ключевые слова: диэлектрическая релаксация, перенос заряда, халькогенидная
система.
REFERENCES
1. Cha, D., Kim, H., Hwang, Y., Jeong, J. & Kim, J. Fabrication of molded
chalcogenide-glass lens for thermal imaging applications.
Applied Optics. 2012, Vol. 51,
no. 23, pp. 5649–5656. doi:10.1364/AO.51.005649
2.
Snopatin, G.E., Shiryaev, V.S., Plotnichenko, V.G., Dianov, E.M. & Churbanov, M.F. High purity chalcogenide glasses for fiber optics. Inorganic materials. 2009,
Vol. 45, no. 13, p. 1439. doi:10.1134/S0020168509130019

3. Charrier, J., Brandily, M.L., Lhermite, H., Michel, K., Bureau, B.,
Verger, F. & Nazabal, V.
Evanescent wave optical micro-sensor based on chalcogenide
glass.
Sensors and Actuators B: Chemical. 2012, Vol. 173, pp. 468–476. doi:10.1016/j.
snb.2012.07.056
4.
Zhang, B., Guo, W., Yu, Y., Zhai, C., Qi, S., Yang. A., Li, L., Yang, Z.,
Wang, R., Tang, D., Tao, G., & Luther-Davies, B.
Low loss, high NA chalcogenide
glass fibers for broadband midinfrared supercontinuum generation.
Journal of the American Ceramic Society. 2015, Vol. 98, no. 5, pp. 1389–1392. doi:10.1111/jace.13574
5.
Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J. &
Uruga, T.
Understanding the phase-change mechanism of rewritable optical media.
Nature Materials. 2004, Vol. 3, pp. 703–708 doi:10.1038/nmat1215
6. Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., & Wuttig, M.
Resonant bonding in crystalline phase-change materials. Nature Materials. 2008, Vol. 7,
pp. 653–658. doi:10.1038/nmat2226
7.
Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C. &
Wuttig, M.
Disorder-induced localization in crystalline phase-change materials. Nature
materials
. 2011, Vol. 10, no. 3, pp. 202–208. doi:10.1038/nmat2934
8.
Zhang, W., Thiess, A., Zalden, P., Zeller, R., Dederichs, P.H., Raty J.Y., Wuttig, M., Blugel, S. & Mazzarello, R. Role of vacancies in metal–insulator transitions of
crystalline phase-change materials.
Nature materials. 2012, Vol. 11, no. 11, pp. 952–956.
doi:10.1038/nmat3456
9.
Gabardi, S., Caravati, S., Sosso, G.C., Behler, J. & Bernasconi, M. Microscopic origin of resistance drift in the amorphous state of the phase-change compound
GeTe.
Physical Review B. 2015, Vol. 92, no. 5. doi:10.1103/PhysRevB.92.054201
10.
Prokhorov, E., Gervacio-Arciniega, J.J., Luna-Barcenas, G., Kovalenko, Y., Espinoza-Beltran, F.J. & Trapaga, G. Dielectric properties of
Ge2Sb2Te5 phase-change films.
Journal of Applied Physics. 2013, Vol. 113, no. 11.
doi:10.1063/1.4795592
11.
Castro, R.A., Bordovsky, V.A., Anisimova, N.I. & Grabko, G.I. Spectra of
charged defects in glassy Ge28.5Pb15.0S56.5.
Semiconductors. 2009, Vol. 49, no. 3,
pp. 365–367. doi:10.1134/S1063782609030191
12.
Anisimova, N.I., Bordovsky, V.A., Grabko, G.I. & Castro, R.A. Features
of the charge transfer in structures based on thin layers of bismuth-modified arsenic
triselenide.
Semiconductors. 2010, Vol. 44, no. 8, pp. 1004–1007. doi:10.1134/
S1063782610080075
13.
Betkheet, A.E. & Hegab, N.A. AC conductivity and dielectric properties of Ge20Se75In5 films. Vacuum. 2009, Vol. 83, pp. 391–386. doi:10.1016/j.
vacuum.2008.05.023
14.
Mustafaeva, S.N. Dielectric properties of TlGa1–xFexSe2 single crystals in
alternate electric fields.
Journal of Radio Electronics. 2008, Vol. 5, pp. 1–11. (rus)
15.
Tominaga, J., Shima, T., Kuwahara, M., Fukaya, T., Kolobov, A. &
Nakano, T.
Ferroelectric catastrophe: beyond nanometre-scale optical resolution.
Nanotechno logy. 2004, Vol. 15, no. 5, p. 411. doi:10.1088/0957-4484/15/5/001
16.
Kolobov, A.V., Fons, P., Tominaga, J., Frenkel, A.I., Ankudinov, A.L., Yannopoulos, S.N., Andrikopoulos, K.S. & Uruga, T. Why phase-change media are fast
and stable: a new approach to an old problem.
Japanese journal of applied physics.
2005, Vol. 44, no. 5S, pp. 3345–3349. doi:10.1143/JJAP.44.3345
17.
Akola, J. & Jones, R.O. Structural phase transitions on the nanoscale: The crucial patterns in the phase changes materials Ge2Sb5Te5 and GeTe. Physical Review B.
2007, Vol. 76, no. 23. doi:10.1103/PhysRevB.76.235201
18.
Caravati, S., Bernasconi, M.T., Kühne, D., Krack, M. & Parrinello, M. Coexistence of tetrahedral and octahedral-like sites in amorphous phase change materials.
Applied Physics Letters. 2007, Vol. 91, no. 17. doi:10.1063/1.2801626
19. Krbal, M., Kolobov, A.V., Fons, P.J., Tominaga, P., Elliott, S.R., Hegedus, J.
& Uruga, T.
Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5 memory
alloy.
Physical Review B. 2011, Vol. 83. doi:10.1103/PhysRevB.83.054203
20.
Hegedüs, J., Elliott, S.R. Microscopic origin of the fast crystallization ability
of Ge-Sb-Te phase-change memory materials.
Nature materials. 2008, Vol. 7, no. 5.
doi:10.1038/nmat2157
21.
Ruiz Santos, R., Prokhorov, E., González-Hernández, J., Luna-Bárcenas, G. & Kovalenko, Yu. Dielectric relaxation processes in stoichiometric Ge:Sb:Te
amorphous films.
Journal of Non-Crystalline Solids. 2010, Vol. 356, pp. 2541–2545.
doi:10.1016/j.jnoncrysol.2010.05.008
22.
Mott, N.F. & Davis, E.A. Electronic Processes in non-crystalline Materials.
1979, Oxford: Calendon Press.
23.
Elliott, S.R. A.S. conduction in amorphous chalcogenide and pnictide semiconductors. Advances in Physics. 1987, Vol. 36, no. 2, pp. 135–217.
doi:10.1080/00018738700101971
24.
Austin, I.G. & Mott, N.F. Polarons in crystalline and non-crystalline materials. Advances in Physics. 1969, Vol. 18, no. 71, pp. 41–102.
doi:10.1080/00018736900101267


Цена: 50 рублей
Заказать
• Этические принципы научных публикаций