В химической кинетике, машиностроении и в других важных приложениях возникает задача Коши для жесткой системы ОДУ неразрешенных относительно производной. Построен двухстадийный L-устойчивый метод типа Розенброка, предназначенный для решения неявных жестких систем ОДУ. На основе этого
метода сформулирован алгоритм интегрирования переменного шага. Приведены результаты расчетов, подтверждающие эффективность нового алгоритма.
REFERENCES
1. Hairer, E., & Wanner, G. Solving ordinary differential equations II: stiff and
differential-algebraic problems. Springer-Verlag: Berlin, 1996, 614 p.
2. Gear, C.W. Differential-algebraic equations index transformations. SIAM Journal
on Scientifi c and Statistical Computing. 1988, Vol. 9, no. 1, pp. 39–47.
3. Brayton, R.K., Gustavson, F.G., & Hachtel, G.D. A new effi cient algorithm
for solving differential-algebraic systems using implicit backward differentiation
formulae. Proceedings of IEEE. 1972, Vol. 60, no. 1, pp. 98–108. doi:10.1109/
PROC.1972.8562
4. Lamour, R., März, R., & Tischendorf, C. Differential-algebraic equations: a
projector based analysis. Springer: Berlin–Heidelberg, 2013, 649 p.
5. Boiarintsev u.E., Danilov V.A., Loginov, A.A., & Chistiakov, V.F. Chislennye
metody resheniia singuliarnykh system [Numerical methods for solving singular systems].
Novosibirsk: Nauka, 1989, 223 p.
6. Yeganeh, S., Saadatmandi, A., Soltanian, F., & Dehghan, M. The numerical
solution of differential-algebraic equations by sinc-collocation method. Computational
& Applied Mathematics. 2013, Vol. 32, no. 2, pp. 343–354. doi:10.1007/s40314-013-
0024-8
7. Braśa, M., Cardoneb, A., Jackiewicz, Z., & Welfert, B. Order reduction phenomenon
for general linear methods. Applied Numerical Mathematics. 2017, Vol. 119,
pp. 94–114. doi:10.1016/j.apnum.2017.04.001
8. Schweizer, B., & Li, Pu. Solving differential-algebraic equation systems: alternative
index-2 and index-1 approaches for constrained mechanical systems. Journal
of Computional and Nonlinear Dynamics. 2015, Vol. 11, no. 4, pp. 044501–044501.
doi:10.1115/1.4031287
9. Dekker, K., & Verwer, J.G. Stability of Runge-Kutta methods for stiff nonlinear
differential equations. Elsevier Science Ltd: North-Holland, 1984, 332 p.
10. Lawder, M.T., Ramadesigan, V., Suthar, B., & Subramanian, V.R. Extending
explicit and linearly implicit ODE solvers for index-1 DAEs. Computers & Chemical
Engineering. 2015, Vol. 82, pp. 283–292. doi:10.1016/j.compchemeng.2015.07.002
11. Boscarino, S. Error analysis of IMEX Runge-Kutta methods derived from
differential-algebraic systems. SIAM Journal on Numerical Analysis. 2007, Vol. 45,
no. 4, pp. 1600–1621. doi:10.1137/060656929
12. Butcher, J.C. Runge–Kutta methods for ordinary differential equations. Numerical
Analysis and Optimization. Springer Proceedings in Mathematics and Statistics.
2014, Vol. 134, pp. 37–58. doi:10.1007/978-3-319-17689-5_2
13. Butcher, J.C. Numerical methods for ordinary differential equations, 3rd edition.
United Kingdom: John Wiley and Sons, Ltd., 2016, 509 p.
14. Levykin, A.I., & Novikov, E.A. A study of (m,k)-methods for solving differential-
algebraic systems of index 1. Communication on Computer and Information
Science. 2015, Vol. 549, pp. 94–107. doi:10.1007/978-3-319-25058-8_10
15. Mazzia, F., & Iavernaro, F. Test set for initial value problem solvers. University
of Bari: Department of Mathematics, 2003, 295 p.